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It is shown that Reed-Solomon (RS) codes can be decoded by using a fast
Fourier transform (FFT) algorithm over finite fields GF(F,), where F, is a Fermat
prime, and continued fractions. This new transform decoding method is simpler
than the standard method for RS codes. The computing time of this new decoding
algorithm in software can be faster than the standard decoding method, for

RS codes.

l. Introduction

Recently, Gore (Ref. 1) proposed the usage of a finite
field transform over GF(g"), where ¢ is a prime number
and n is an integer, for decoding RS codes. Michelson
(Ref. 2) has implemented Mandelbaum’s algorithm
(Ref. 3) and showed that the decoder, using a transform
over GF(q"), is faster than a more standard decoder
(Ref. 4). The disadvantage of this transform method is
that the code length is such that the most eflicient
FFT algorithms cannot be used to yield fast transform
decoders.

Rader (Ref. 5) proposed transforms over rings of inte-
gers modulo Fermat numbers. Such transforms can be
used to compute error-free convolutions of real integer
sequences. Agarwal and Burrus (Ref. 6) extended Rader’s
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Fermat number theoretic transform by using the gen-
erator a = /2 for the transform rather than o =2. If
\/2 is the generator of the transform, the transform has an
FFT algorithm which can be used to calculate transforms
with as many as 2** points of integer data. This trans-
form was extended to residue classes of quadratic inte-
gers Ir (¥/2), where \/2 is a root of 22 —2 =0, F, is a
Fermat number and I, denotes the set of integers mod
F, (Ref. 7). McClellan (Ref. 8) has realized recently the
hardware for the Fermat prime theoretic transforms. He
showed that the arithmetic used to perform these trans-
forms required only integer additions and circular shifts.

Recently, Justesen (Ref. 9) proposed that transforms
over GF(F,), where F,=2"+1 for n=1234 is a
Fermat prime, can be used to define RS codes and to
improve the decoding efficiency of these codes.
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Recently, the authors (Ref. 10) extended the transform
to the finite field of type Ir, (¥/2) (isomorphic to GF(F,)),
where /2 is a root of the polynomial P(x) = x® — 2 over
GF(F,), and I, denotes the set of integers modulo F,.
Again the arithmetic used to perform this transform
requires only integer additions, circular shifts, and a
minimum number of integer multiplications by powers
of /2. An FFT over the finite field of type I (¥2) can
be used to encode and decode RS codes of as many as
2+ symbols for n = 3,4. Encoding and decoding can be
accomplished faster and more simply than any other
known standard decoder for RS codes of the same
symbol range. It was also shown (Ref. 10) that the FFT
over GF(K+2* 4 1), where K and n are integers, can be
used to encode and decode a class of RS codes. A special
case of the radix—8 FFT over GF(g?), where g =27 — 1
is a Mersenne prime, was developed to encode and
decode another class of RS codes.

The decoding of systematic Reed-Solomon codes using
the transform over GF(F,) was composed of the follow-
ing three steps (Ref. 10).

(1) Compute the FFT over GF(F,) of the received
code N-tuple; ie,

N-1 .
SK — Z ymamb

m=0
where v,,6GF(F,) and a is an element of order N.

(2) Use Berlekamp’s iterative algorithm (Ref. 11) to
determine o; from the known S;=E; fori=
12, -t and j=12 ---,2t. Then compute the
remaining transform error E;.

(3) Compute the inverse of the transform over GF(F,)
of Sx — Ex to obtain the corrected code.

An advantage of this transform decoding algorithm
over other methods is that a FFT over GF(F,) can be
used to compute the syndromes and error magnitudes.
In this paper, Berlekamp’s iterative algorithm can be
modified by using continued fractions in GF(F,). This
modified Berlekamp’s algorithm can be easily imple-
mented on a digital computer.

Il. New Approach to Decode Reed-Solomon
Code Using the Transform Over GF(F,)

In this section, a new approach is developed to define
and decode RS codes. The following theorem and defini-
tions are needed.
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Theorem 1: Let g be a prime number. Also let A(x) be
the formal power series of form

Afx) =3 agr 1)

where a;eGF(q), the degree of A(x),d, is a real integer,
and g, 0. Define the set

oo
F = {Z a:ix*" g ear g anddisaninteger}
i=0

such that addition is given by
Gx) = B(x) + C(x) =S b= + 3" cix/, ¢ > f
=0 =0

i .
=3 g
=0
where

b,i<e —f
gi = .
bi +cienyi>e—f

and multiplication is given by

H(x) = B(x)* C(x) = (i b,-,xM) (i cle-i>

hixe+f—i

s

K2

1l
=}

where
i
hi =% bci.,
j=o

Then R is an infinite field.

Proof: It is evident that R satisfies the postulates of a
commutative ring with unity element. An additive iden-
tity element and a multiplicative unit element in this
ring are

D(z) =Y. dix*i d; = Ofori =0,1,2, -, 0
1=0
and
F(x) = fix*,d =0,f, = 1,f; = 0forj >0
i=0
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Every nonzero element of F, i.e.,
2 .
Alx) =2 axet
=0

has an inverse element B(x) defined by

B(9) = Alx)* = 3 bive

where
b, = ay
31
bi — 061 (Z (Zjbi—j> for (l = 1;23 o )
j=1

Hence F is a field.

If the set R is composed of all power series not con-
taining negative powers of x, i.e.,

d
R = {Z a’ixd-m |ai€GF(q), disapositive integer } CF

=0

(2)

then it is evident that R is a subring of F. The integer
part [A(x)] of A(x) in (1) is defined by

1
- El: aix‘“
i=0

Let p(x) be the ratio of elements in R, i.e., a rational
fraction form of type,

Z aixe'i
plx) =7

Z bixf“i
1=0

where

Za xe-t Zb x’teRcCF

1=0
By theorem 1, it can be proved that p(x) is an element in

the field F. An element in F of form p(x) is called a
rational element.

Let GF(F,) be the finite field, where F,, =2*" + 1 is a
Fermat prime for n = 1,2,3,4. It was shown in Ref. 10
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that the field of type Ir (¥/2) is isomorphic to GF(F,)
for n = 8,4 and that a = ¥2eGF(F,) is an element of
order 27+, In these fields a systematic RS code can be
specified in GF(F,) as follows:

Assume the code length for the RS code is N = 27+,
Let a code word be represented by f(x), a polynomial
of degree N — 1 over GF(F,). The generator polynomial
of g(x) is defined as

d-1
g0 =3 (x— o)
where
d =25 <N =2mt
and o = /2, a? = (¥2)2, -+ ,a? = (Y2)? are the roots of
g(x) in GF(F,). The resultant RS code with N symbols,

which is a multiple of the generator polynomial, is com-
posed of d — 1 parity check symbols and N — (d — 1)
information symbols, where d is the minimum distance
of the RS code. If ¢ is the number of errors, the code will
correct, then d = 2t + 1.

Suppose that the code word f(x) =f, + fix + -
+ fy-1x¥! is transmitted over a noisy channel. The re-
ceived code word R{x) =y, - yx -+ o0 + yy ¥t s
composed of the original code word with the addition of
possible errors, i.e.,

(%) = f(x) + e(x)

where e(x) = e, + e;x + ex2 + -
polynomial.

+ ey_;x¥t is an error

Upon receiving the message v(x), the first step in the
decoding process is to take the FFT of the message in
Ir,(¥/2). The transform is taken of the received N-tuple
message (yo,y1, *** »yn-1), the coeflicients of the polynomial
v(x). This transform is

= 3 fa + (VD

2
-

1l

N-1
]cn )Kn 4 Z en )An
n=0

= Fg+ EcforK=0,,

3
1,
=]

- N—-1

Since f(x) is a multiple of g(x), f(a*) =0i=1.2, -



Hence,

N-

=3 en(Y2)En

n=0

N-1
- Z en[(\8/§>n]K fOr k = 1)27

L

Sk = e(~/2)¥
d—1

(3)
where ExeGF(F,) is periodic with N. Let Y; and X; be

the ith error magnitudes and the ith error location, re-
spectively. Then the syndrome in (3) becomes

t
SK:EK:ZY¢X1K fork=1,2,-" ,d'_l (4)

The generating function of the sequence (Ef) is defined
as a formal power series. That is,

E(x)=Ex*+ Ex?+ Ex®+ - :ZEKTK (5)
e}
where

ExeGF(F,)

Substituting (4) into (5), one gets

0 t
E(x) =3 > Y Xix K
K=1 i=1
t oo
= Z Yi Z (XiX"l)K
i=1 K=1
t X x1
2R o=y
Thus
E(x)=Ex'+ Ex?+ Ex®+ -
: X, Pk
=Y, =
?L:; x—X; ox) ©)
where
t
P(x) and o(x) = [T (x — X;i) €R

i=1
Note that E(x) is a rational element in F. Since
a(x) = xt — (1'19(?'5‘1 + szt_z + -+ (—l)to‘t, then
olX;) =0=X¢ — Xt + ¢, X102
-+ (—1)foy, fori=12,--, ¢
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Multiplying the above equation by Y;X!, one gets,
Y X4 — ¢ XPt o+ g,V X2 4 o+ (— 1) e, Y X

Summing on i for i = 1,2, -+, ¢, then

Y Xi — GIZY Xittt 4 -

i=1 1=1

Using (4), we have,

Sj+t - 0‘1Sj+t_1 +oere o (“l)togsj = 0, fori <t
and
Ej+f, - 0'1Ej+t_1 + -+ (“'1)t0'tEj =0 fOI'i> t

M

It will be shown in the next section that o(x) in (6) can
be calculated by using continued fraction approximations
when only the first 2¢ coefficients of E(x), ie., Si, Su-+,
Ss. are known. If the coefficients of o(x), ie., o; for
i=12 -+ t, are known, then Eq. (7) is used to obtain
E,, E4, E4y, -+, Ey_, and the transform of the N-tuple
error pattern ie., (Eg, Ei, Ey E;, -+, Ey-,) is obtained.
Thus, the N-tuple error pattern (e, €, -+, ey-1) is found
by taking the inverse transform over Ir_ (¥/2) of Ex for
k=0,1,--- N — 1. Finally, the original N-tuple code
word can be computed by subtracting e, from the re-
ceived code word 7.

I1l. Implementing Berlekamp's Algorithm by
Using Continued Fraction Approximations

It was shown in the previous section that E(x) = P(x)/
o(x) in (B) is a rational element in the field of all formal
power series F. Thus, using a procedure precisely similar
to that used for rational elements in the real number
field, described in Appendix A, it is possible to use con-
tinued fractions to develop a finite sequence of rational
approximations to E(x). That is, the recursive formula on
convergents is given by,

_ qs(%)Ps-1(x) — Pyo(x) _ Py(x)
B = @@ Ton®  w® O
where
Py(x) = q1(x), Po(x) = 1, 09(x) = 0, 0:(x) = 1.
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The partial quotients gs(x) in (8) can be computed by the
following formula recursively,

Rg-2(x) = qs(x)Rs-(x) + Rs(x) (9)

where R.,(x) = E(x), By(x) = 1 and qs(x) is obtained as
the “integer part” of Rg(x)/Rs.(x) and Rg(x) is the
“remainder”; and

(—1)'Ro(x) = os(x)E(x) = Ps(x) (10)

where og(x) and Pg(x) also satisfy the recursion in Eq. (9)
with the initial values given in Eq. (8). By applying
Euclid’s algorithm to the rational element E(x) in F,
observe that E(x) = Pg(x)/o4(x) will be terminated when
Rg(x) = 0.

The norm of A(x)eF will be used below in the proofs of
theorem 2. This norm is defined as follows:

Definition

The norm of A(x) = :V: aix™,|A(x)|, is defined by
i=0

A =2

where d is a degree of A(x)

The properties of norm [[A(x)| are
a) [AB[| = [Al-[B]

b) A >0and A =0 iA=0

@kazﬁﬁ

&) /A== B| < max (JA[,|B]) if |A] =|B] and|A = B|
— max (JA|, [BI)if]A] 8]

Lemma 1: Let n be the smallest finite integer such that
R,(x) =0, where Ry(x) is defined in (10); ie., E(x) =

P.(x)/ox(x). Then |Rs(x)| is a monotone decreasing
sequence for s =0,1,2,---,n and |log(x)|| is a monotone
increasing sequence for s = 0,1,2, -+, n.

Proof:

By (9), one gets,

Rs-z(x) = qs(x)Rs-(x) + Rs(x)

where deg Rg(x) < Ry-1(x). This implies || Rs(x)|| < || Rs-2(%)]|
for n = 1,2, - --, n. Furthermore, since o:{x) = 1 and o,(x)
= 0, then [|oy(x)[ > [loo(x)||. Assume [josa(x)] > los-2(%)]
for all s < n. By (8),

05(x) = qs(X)os2(%) T o5-o(%)
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It follows from the norm properties that
los(x)[] = [lgs(@)os(x) + os-2(x)]]
= [gs(®)osa(®) | = [ gs(x) [ osa(®)]] (1)
But, by (9),
lgs(x)Rs+(x)[| = [|Rs(x) — Rs-a(x)|

= || Rso(x)
_ [Bsa()]
”qs(X)” = HRS—1(7C)H >1
Thus, (11) becomes

llos(x)| > llos-(x)] for1<s<n.

To compute the norm of the difference E(x) — Py(x)/os(x),
we observe that

 Po®)|| _ IS@os(x) = Ps(x)] _ [Rs(x)]
\h“) @ o] fos(a]
Then, by lemma 1,
HE(x)—i—f%) <1|E(x)—%)- , for0<s<n-—1

(12)

For decoding RS éodes over GF(F,), we only know the
first 2¢ coefficients of E(x) in (6). That is,

E(x) =Ext+ Egx? 4 o Eyp?t A4+ Xao2t1 4 -
X(x)

where X(x) is an unknown element in F. The following
theorem is developed to recover the rational element E(x)
in F precisely when only the first 2¢ coefficients of E(x) in
(6) are known.

Theorem 2: Let E(x) = P(x)/o(x) in (6) be a rational
element in F defined by theorem 1, where P(x) and
o(x)eR are defined in (2) and ||E(x)|| < 1. Let X(x) be
an unknown element in F such that deg X(x) < — 2 deg
o(x). If the first deg X(x) + 1 coeflicients of E(x) are
known, i.e.,

E(x)+ X(x) = Exx* + Exx? + -+ + Eqegx(a) 2238 ¥ @+

+ XydegX(@) 4 ...
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where

X(x) = Xyxdeg X(x) + ..

Then E(x) can be obtained by using the continued frac-
tion algorithm operating on E(x) 4+ X(x).

Proof: By (10), we know that
(—1)%Rs(x) = os(x)[E(x) + X(x)] — Ps(x)
= (os(*)E(x) — Ps(x)) + o5(x)X(x)

where o5(x)X(x) indicates the location of the unknown
coefficients in Rg(x).

We see that following the Euclidean division of Rg-,(x)

by Rs.(x), it follows immediately that g4(x), which is
independent of X(x), can be determined if and only if

deg Rs1(x) — deg os_1(x)X(x) > deg Rs_,(x)
~— deg Ry-1(x) = deg gs(x) for S > 2 (18)

(Note that the left side of (13) indicates the number
of known coefficients in the divisor and the right side of
(13) indicates the degree of the partial quotient gg(x).)
It follows from (13) that

92 e Rt (@) >, Qdeg Ry (2)+deg 05 4(2) X (2)
By the properties of norm, (13) becomes
[ Bss(x) |2 > [ Rea()]| [osa() [ X() | (14)
But, by (11) in the proof of the lemma 1, one has,
los(x) | =1gs(x) || [|os+(x) | (15)
Since, by (9),
| Rs-2(%) || = | gs(x)Rs-2(x) + Rs(x) | (16)

Then, by the lemma 1, (16) becomes

| Rs-2(%) | = | gs(®)Rs(x) | = | gs(x) || * || Ree() |

From (8), one gets

o) =1 (18)
and

[ Ro(x) | =1

Thus, from (15), (17), (18), we have
llos-1(x) | = Rso() | (19)
Substituting (19) into (14), one obtains
[ Rs-a(2)[[* > (| X(x) |
Hence gs(x), which is independent of X(x), is obtained
by the Euclidean division of Rg.(x) by Rga(x) if and

only if

”Rs-l(x) Hz > HX(x) ” (20)

Let g,(x) be the last partial quotients such that q,(x),
which is independent of X(x), can be determined by the
Euclidean division algorithm. It follows from (20) that

[ Ra(2) [I* < [ X(2) | 2y,

By (19), (21) becomes

[onea(x) |2 < | X() |
This implies
X[ < llonalx) [* (22)

Since [[o(x) [ < | X(x)

-1, thus (22) becomes,

[o(x) [[2 < |fona(®) |* (23)
Consider either
P  P(x)
HEW 7 () —HE(") e
or
P, (x) P(x)
‘Fm‘am>4km“om
If
P,(x)|l _ Px) || _
|~ 25| =m0 — ] =
then
By = F._ P
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If

- S e~ 25
then
[~ 2 =m0 - 225)

(G me
(- 225 [ -al) e

By (12), (24) becomes either

-5 o228
or

- 281 285281
If

-5 -2

this implies R.(x) = Rn.i(x) = 0. If

P,(x)|| _ Pun(x)  Pu(x)
\.E(x) a O'n(X) - 0'n+1(x> o on(x).
_ IIPn+1<x)an(x) (%) Pa(®) |
lonea(x) ||« | on(x) ]

(25)

By the same procedure used in the derivation of (A-10)
in Appendix A, (25) becomes

P(x)  Pa(x) 1
@ ) | < Tom@lem] &
Multiplying (26) by || o(x) || [|ea(%) | gives
| P(x)on(x) — Pu(x)o(x) || = H!<|rn+1x) H”
By (23), this yields,
| P(x)on(x) — Pa(x)a(x) || < 1,
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which implies
[ P(x)ou(x) = Pu(x)o(x) || =0

Then

Hence the theorem is proved.

A simple example of theorem 2 for decoding a RS code
in GF(F,) is now presented.

Example: Let GF(2% + 1) be the field of integers modulo
the Fermat prime F, = 17. We consider a 2-error correct-
ing 8-tuple RS in GF(17). (Note that this example is the
same example in Ref. 10.)

Assume the information symbols are 1,2,32¢GF(17);
ie, I(x) =1x" + 2x° + 3x° + 2x*. By the example in
(Ref. 10), the encoding of I(x) is the polynomial

b(x) = 1x7 + 2x¢ + 3x® + 2+ + 152° + 122 + 2x + 5
Suppose that two errors occur in the received words, i.e.,

y(x) =5 + 2 + 9 + 15x° + 2x* + 1x° + 2x° + 1af

By the example in (Ref. 10), the syndrome can be calcu-
lated, using a FFT over GF(F,). That is,

8-1
Sk = Ex = ya2™ fork=1234
n=0
Hence,
S;=E, =-—8
S,=E,=—5
S,=E,=11
S,=E,=—1
By (6)
P
E(x)=—8x1—5x2+1lx—x*+ Xa®+ - Z‘E%)
[ea
X(x)
(27)
where
o(x) = f[(x — ;) =2 — oix + o3,
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and X denotes the first unknown coefficient of X(x). Since
the deg X(x) < dego(x) = —2t = —4 in (27) then, by

Theorem 2, o(x) can be determined by the use of a con-
tinued fraction which is given below in tabular form.

o5(x) = qs(*)osa(x)

S Ry-o(x) = qs(x)Rs-1(x) + Rs(x) qs(x) R(x) + oga(x)
~1 1
0 0
1 0 0 —8xr'—5r2+1lx® o2)=0-0+1=1
—xt 4 Xxs

ls —8x? — 5x? + 1la® —at + Xa® + -
Ox? 4+ 0x? 4+ 0x® + Ox* - -~
— 8 —5x24 1lx® —x* + Xu % + -+

2 2x + 3 2x + 8 10x2 + x° o2(x) = (2x +3)+14+0
— 8xt — 5x2|1 + Xt + - =2x+ 3
+ 11 —a? '] — 100t + 5x2 — 2278 + Xt + -
+ Xa® A+ - 106 — 52 + 208 + Xat -+
10x* — 15x2 — x3 + -+
1022 + 8u® + Xt + -
3 6x — 4 6x—4 0+ Xx3+ - oy = (6x—4)(2x+3)
— Tx? 4 8x%| — 8xt — Bx? + 1lw? — x* + X5 + -+ +1
+ Xt =8t a? o X e =x'—2x+9
— 6% + Xx® 4 -
._6x-2
— 0x? +Xx3

From the above tabular form, observe that
R, = 0 + Xx3. Hence, o(x) = o5{x) = x> — 2x + 9 where
o; = 2 and o, = 9. By (7), one gets

Ej+2 - 2Ej+1 + 9E7 =0 fOI']' > 2 (28)
From (28), the rest of the transform E; of the error
pattern is E; =1, E; =11, E; =13, E; = E, =12. By
example in Ref. 10, the inverse FFT over GF(2* + 1) of
the E; forj =01, ---,7 is given by
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(60,61,62,63,64,65,36,67) = (070514;())0)15;090)
The corrected code word is

b(x) = y(x) — e(x) = (5,29,152,1,2.1)
— (0,0,14,0,0,15,0,0)

= (5,2,12,15,2,3,2,1)
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Appendix

The Computation of Continued Fractions by Using Euclid’s Algorithm

Let S be an irreducible rational element S in the field
of real numbers. In this Appendix, it will be shown that
a finite sequence of rational approximations to S can be
constructed by using continued fractions.

Let S = a/b, where a and b are integers, be an irre-
ducible rational element in the field of real numbers.
Using Euclid’s algorithm, one gets,

a = bql -+ Y1 (A-l)
b= Y1q2 + v

vi = y29s + s
Yi-2 T v&-19x T vx

Yn-3 = 'Yn—zqn—l + Yn-1

Y2 = Yn-1Gn T ¥Yn = YnGn

or
a Y1
b 7Tp
b
— q2 + ﬁ
2 Y1
RN 0]
Y2 Y2
YH-2 + YE
YK-1 K YE-1
Yn-3 Yn-1
= Qs -+
Yn-2 ns Yn-3
Yn-2
n — qn
Yn-1

By (A-1), S = a/b can be developed by a continued frac-
tion, as follows:

a
S—F_q1+ L 1
qe q3+

 + L k<n
CIK‘*‘W{’
(A-2)
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or

qn (A'S)

where g, for k= 1,2,---,n are called the partial quo-
tients.

Let us define the convergents Si for k= 1,2, -
follows

-, n as

S, =q.
1
Sz:q1+72-
1
S;=q,+ i 1
. 9=
a 1
Sn——b——q1+ N 1
q: 4 -
- 1
—}-..__
qn

From (A-1), we observe that Sk is a finite sequence. In
other words, S;, S, -+, Sk, *+- will be terminated when
ya = 0. Thus, S, = a/b, where n is a finite number.

A recursive formula for convergents is generated as
follows. Let P, = 1 and Q, = 0. Then set

o _ P
S, = I=0
1 g1+ 1 P, + P P,
Sz__:q1+______qq1 _ 4 1t o _ P2
q: g:*1+0  ¢.0.+ Q, Q:
1
<q2+—)P1+PO
1 _ qs
Ss=qut— = 1
At — (gt =)0+
q-: 7 <q q3>Ql Qo

1
_q2P1+PO<_q—3—>q3_ qsP. + P, _ P,

B (qZQl + QO) +%1: R q3Q2 + Ql R Qg
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The recursive convergents are defined as

qKPK—l + Pxs Py
Sy =it T K2 X A4
K qKQK—l + QK—z QK ( )

WhereP1 = ql; PO = 17 QO - O: Ql = 1; for k = 233>“', n.
(A-4)

In order to calculate Eq. (A-4), it is necessary to com-
pute the partial quotients. To do this, by the same pro-
cedure used in the derivation of (A-4), we can show first
that S in (A-2) can be expressed in the following form:

. (qK + ‘aK)PK—l + Py, , .
S= (0x F a0 T 0rs’ where oy is defined in (A-2)

If S has this form, then

(QK + OLK) (PI(—l — SQK—I) =S QK—z — Py,
and,

1 — + o :_PK—Z_QK—zs:_R}(—z
ar. ETHT T F "0 R

(A-5)

where Ry = Px — QxS. It follows that
Rk
- <_R;:_ > w2 = Ri

(A-6)

QKR%—1 + Ry = —agBRyg, =

Finally,

Ry = qKR;(—l + R;f—z

By (5-A), the initial condition of R; for K =0,1, is
given by

R, =P,—Q.8= -8
R,=P,—Q,S=1-0-S=1

Define a new function Ry in forms of Rk by Ri =
(—1)XRy. Then (A-6) becomes

— (—1)**Rg- = qx(—1)**Riy — (—1)*Rx
It is evident that

Ry, = qxRg-—1 + Ry for both even and odd k
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Hence
Ri_» = qxRk-, + Rk (A-7)
with
R,=(—1)'R, =S8
R,= (-1 R; =1
and by (A-5)
(—1)*Rx = QxS = Px (A-8)

To show that Sx = (Px/Qx), which is computed by
using a continued fraction, is an irreducible fraction, i.e.,
(Px,Qk) = 1, consider the difference between Si and Sx_,
for K > 1. That is,

Px  Px _ PiQro— QuPra
QK QK—I QKQK~1

Sk~ Sk =
(A-9)

Let IK = PKQK—I - QKPK—I- By (A"4:),

Ix = PKQK—] - QKPKVI = (qKPK—l + PK—z)QK—l

- (qKQK—l + QK—Z)PK-l
= — (Pg-1Qx-2 — Ox1Px,)
(A-10)

= — g,

Since I, = P,Q, — Q,P, =q,:*0—1-1= —1, one has,
by (A-10), I, = —I, = 1. With the above result, one has
Iy = (—1)%, It follows that

SK—SK_IZ—————:—;—— fork>1

or

PyQr — QxPiy = (—1)¥ fork >1 (A-11)
It (PK,QK) = d}(, then, by (A-ll), dKl(—l)K ThlS im-
plies that dx = 1. Hence (Py,Qx) = 1.

A simple example, showing how to compute the rational
approximations to an irreducible rational number, is pre-
sented in the following tabular form. For this example,
S is the fraction 38/105.

JPL DEEP SPACE NETWORK PROGRESS REPORT 42-36



s Rs—2:QSRs—1+Bs Rs PS:qSPS—1+PS~2 QS:qSQS—1+QS—2 S = 'Q‘_S
— 0
0 0
38 38
1 —I—(E—O' 108 P,=01+0=0=g, Q;=0-0+1=1 S, =1
38 29 1
38 9 1
3 Tﬁ_b— 108 P,=114+0=1 Q:=12+1=3 53—5-
29 2 4
4 —1?5—3'—— 105 P,=814+1=4 Q,=3-3+2=11 S. 0
9 1 17
5 Tﬁg——éi-————- 105 P,=4+4+1=17 Q;=4-11 +3 =47 Ss yea
6 2 =2 0 Pi=2+17+4=238 =2+47 + 11 = 105 S 38
105~ "= = Q.= = =105

From the tabular form when

R, = 0. By (A-8),

S

s =n =6, one observes
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For a more detailed discussion of the relation of Euclid’s
algorithm to the continued fraction associated with a
rational element in the field of real numbers, see Ref. 12.
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